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ABSTRACT 

Smart specialization has become a hallmark of the EU’s Cohesion Policy. Envisaged as a bottom-up 
initiative identifying local knowledge cores and associated competitive advantages, the 
operationalization of smart specialization has been rather limited, as a coherent set of analytical tools to 
guide the policy directives remains elusive. To tackle the weak underpinning of smart specialization 
policy, we propose a policy framework around the concepts of relatedness and knowledge complexity. 
We use EPO patent data to provide evidence on how EU regions develop new technologies in the period 
1990-2009. We find that diversifying into more complex technologies is highly attractive but difficult 
for EU regions to accomplish. Regions can overcome this diversification dilemma by developing new 
complex technologies that build on local related capabilities. We use these findings to construct a policy 
framework for smart specialization that highlights the potential risks and rewards for regions of adopting 
competing diversification strategies. We show how potential costs of alternative strategies in regions 
may be assessed by making use of the relatedness concept, and how potential benefits of various smart 
specialization strategies can be derived from estimates of the complexity of technologies. A series of 
case-studies of different types of regions illustrate the utility of this policy framework. 
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1. INTRODUCTION  
 

In a market economy, the rapidity of technological change forces continuous adaptation as innovation 
and economic crises reshuffle the competitive standing of firms and regions alike. Within this 
environment, the capacity to develop new ideas, to recombine existing knowledge assets and blaze new 
technological trajectories is imagined to offer at least temporary respite to the relentless pressure of 
falling costs. Facing a variety of technological possibilities and an uncertain future, however, few 
economic agents are in a position to identify the best way forward. It was against this backdrop that the 
European Union forged the ambitious growth strategy, Europe 2020. 
 
At the core of this development strategy is smart specialization, a vision of regional growth possibilities 
built around existing place-based capabilities (Barca, 2009; Foray et al., 2009; 2011; McCann and 
Ortega-Argilés, 2015). The goal of smart specialization is not to make the economic structure of regions 
more specialized (i.e. less diversified), but instead to leverage existing strengths, to identify hidden 
opportunities, and to generate novel platforms upon which regions can build competitive advantage in 
high value-added activities. Smart specialization emanated from the idea that regions across the EU have 
different economic and institutional structures that shape possibilities for their future development 
(Kroll, 2015). The result was a clear denunciation of the top-down ‘one size fits all’ policy that had led 
the EU to fund nation states rather than individual regions, and fashionable sectoral targets rather than 
realistic industrial foundations (Tödtling and Trippl, 2005; Asheim et al. 2016). 
 
The question remained, how to identify the targets of place-based development policy? One answer was 
readily available in the recommendations of the Knowledge for Growth Expert Group (Foray et al., 
2009). Their call for smart specialization focused on building competitive advantage in research 
domains and sectors where regions possessed strengths and leveraging those capabilities through 
diversification into related activities (Foray et al. 2012). In important ways, this work built a series of 
policy prescriptions around the concept of heterogeneity in regional knowledge bases and path 
dependence in their evolution (Rigby and Essletzbichler, 1997) and the related variety concept (Frenken 
et al., 2007). However, the operationalization of smart specialization has been criticized as a 'perfect 
example of policy running ahead of theory' (Foray et al., 2011; Boschma 2014), lacking an ‘evidence 
base’ (Morgan 2015; Unterlass et al., 2015), and building on ‘anecdotal evidence rather than the 
application of theoretically grounded methodologies’ (Iacobucci and Guzzini, 2016; Santoalha, 2016). 
 
The paper aims to contribute to this debate in three ways. First, we provide a theoretical framework for 
smart specialization around the concepts of relatedness (Hidalgo et al., 2007; Neffke et al., 2011) and 
knowledge complexity (Hidalgo and Hausmann, 2009; Balland and Rigby, 2017). Second, we assess 
this policy framework empirically and provide new evidence on how EU regions develop new 
technological fields. To achieve this goal, we identify existing knowledge bases of EU regions, we 
develop a measure of relatedness between technological categories using data from the European Patent 
Office, and we calculate a knowledge complexity measure of technology classes using network-based 
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techniques. Third, we combine the relatedness and complexity measures in a smart specialization policy 
tool that assesses the costs and benefits of alternative technological trajectories in each region. 

 
The paper is organized as follows. Section 2 presents the theoretical concepts of relatedness and 
knowledge complexity as key building blocks of smart specialization policy. In Section 3, we show how 
these may be operationalized using patent documents and network-based techniques. Section 4 presents 
new econometric evidence on how relatedness and knowledge complexity have shaped diversification 
patterns in European regions from 1990 to 2009. In Section 5, we combine the relatedness and 
complexity measures in a smart specialization policy framework. In Section 6, we apply this framework 
to examine diversification prospects across a series of EU regions. Section 7 provides a brief conclusion 
and discusses some remaining questions related to smart specialization policy. 
 
 
2. BUILDING BLOCKS OF SMART SPECIALIZATION 
 
This section connects the smart specialization literature (Foray et al. 2009, 2011) with the regional 
diversification (Hidalgo et al. 2007; Neffke et al. 2011) and economic complexity literature (Hidalgo 
and Hausmann 2009). We  argue that relatedness and knowledge complexity are key building blocks of 
smart specialization, that we envisage as a place-based policy in which regions aim at renewing and 
upgrading their economic structure by building on their existing capabilities (Boschma, 2014). 
 

2.1. TECHNOLOGICAL RELATEDNESS AND REGIONAL DIVERSIFICATION  
 
Competition in today’s global economy rests heavily on innovation as many of the standard price-based 
forms of economic advantage have been flattened. As the overall stock of knowledge has expanded, a 
division of labor distributed its parts widely across agents and different regions. Thus, regional 
economies are increasingly understood as localized communities of practice that reflect place-bound sets 
of technological capabilities, routines and institutional arrangements (Storper, 1997). With knowledge 
production increasingly conceived as a process of recombining existing ideas (Weitzman, 1998), so 
regional economies are imagined to move along place-based technological trajectories, where processes 
of search and exploration are guided by existing knowledge capabilities and well-established routines 
(Dosi, 1982; Rigby and Essletzbichler 1997). This is not to argue that knowledge spillovers and other 
forms of knowledge sharing are always localized (Bathelt et al., 2004). However, the tacit nature of 
much knowledge means that geography continues to play a critical role in the emergence and evolution 
of technology, especially that which is complex and more valuable, for many kinds of knowledge do not 
travel well (Maskell and Malmberg, 1999; Sorenson et al., 2006; Balland and Rigby, 2017). 
 
The idea that new technology is born of existing ideas has rekindled the debate on the costs and benefits 
of regional diversity (Essletzbichler 2015). Frenken et al. (2007) suggested that more important than the 
overall variety of sectors found in different regions is the extent to which elements of that variety are 
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related. The relatedness concept rests on the idea that knowledge has an architecture that is based upon 
similarities and differences in the way that different types of knowledge can be utilized. When 
knowledge subsets are close substitutes for one another, or when they demand similar sets of cognitive 
capabilities and skills for their use, we think of them as being related or proximate to one another in 
some form of ‘knowledge space’ (Breschi et al., 2003). Organizations compete through extending their 
knowledge domains and their capacity to utilize more components of the knowledge space. They do this 
by search and exploration of different parts of that space. Search costs rise rapidly around the boundaries 
of existing expertise and thus the cost of diversification hinges critically on the distance between 
knowledge components that are known and those that remain as yet unknown (Atkinson and Stiglitz, 
1969; Chatterjee and Wernerfelt, 1991; Webber et al., 1992). 
 
For Frenken and Boschma (2007), diversification is imagined as a branching process that gives rise to 
new activities within regions. Related diversification of cities and regions is depicted as a higher-order 
reflection of micro-level dynamics in which individuals and organizations extend the scope of their 
activities around the technological competencies and the behavioral routines that they accumulate over 
time (Balland, 2016). Thus, the emergence of new technologies and new sectors within regions is not 
random, rather it reflects the existing collective capacity of agents that produce regions with distinctive 
technological and industrial profiles. A large and expanding volume of empirical studies provides 
supporting evidence (Boschma, 2017). Hidalgo et al. (2007) explored how countries expand their mix of 
exports around the products in which they already established a comparative advantage. Neffke et al. 
(2011) used product portfolios of manufacturing plants to understand sectoral relatedness and exploited 
this methodology to examine industrial diversification in Swedish regions. Along similar lines, Rigby 
(2015) and Boschma et al. (2015) used measures of relatedness between patent classes to predict the 
evolution of technological change within U.S. cities. At a more global scale, Petralia et al. (2017) 
analyzed technological branching using patent applications by inventors in 65 countries. 
 
Based on this discussion, we formulate two hypotheses on relatedness that will be tested for European 
regions, and which will be used in Section 5 to formulate a smart specialization policy framework in 
which relatedness reflects the difficulty or cost of moving from one technology to another.  
 
H1: regions are more likely to develop new specializations in technological activities that are related to 
their knowledge bases 
 
H2: regions are more likely to experience technological growth in technological activities that are 
related to their knowledge bases 
 
 

2.2. KNOWLEDGE COMPLEXITY AND REGIONAL DIVERSIFICATION 
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Knowledge bases of regions vary not only in terms of their technological composition but also in terms 
of their value. The value of knowledge types or technologies, like most goods, reflects a balance of 
supply and demand. Technologies that are simple to copy and that can be moved easily over space tend 
to be of little value and thus do not provide a source of long-run rents. Technologies that are more 
complex and difficult to imitate are more sticky in space: they hold promise as sources of competitive 
advantage for the firms and regions in which they are generated. A standard distinction separates forms 
of knowledge that are codified from that which is tacit (Maskell and Malmberg, 1999). Because tacit 
knowledge is built around inter-personal contact and collections of routines embodied in individual 
firms and localized networks, it tends to be rooted in place. Tacit knowledge is viewed as a primary 
source of competitive advantage for firms (Kogut and Zander, 1992) and regions (Lawson and Lorenz, 
1999; Asheim and Gertler, 2005). Though competition renders much that is tacit codifiable over time, 
continuous learning and recombinant innovation provide sustained economic advantage. 
 
Which regions hold the most valuable knowledge, especially that which is tacit and thus difficult to 
access? So far it has proven difficult to answer this question, at least in part because we have no readily 
available measures of tacit knowledge, let alone its spatial distribution. Kogut and Zander (1993) argue 
that complexity is a critical dimension of what makes some knowledge tacit. After Simon (1962), the 
complexity of a technology, a subset of knowledge, is understood as a function of the number of 
components out of which it is constructed and the interdependence of those components (Fleming and 
Sorenson 2001). Hidalgo and Hausmann (2009) developed an idea of product and place complexity 
based on the product-level diversity of national economies and the ubiquity (or range) of countries 
across which individual products are produced. They argue that countries develop different core 
competences: countries that amass larger sets of capabilities tend to produce more specialized products 
that are hard to copy or imitate by others. The complexity of an economy is embodied in the wide range 
of knowledge or capabilities that are combined to make products: less ubiquitous products are more 
likely to require a greater variety of capabilities. These specialized (complex) goods tend to be produced 
by relatively few national economies and form the basis for long-run competitive advantage. Complex 
goods also tend to be in their early stages of development which enhances further their growth potential. 
Balland and Rigby (2017) found indeed wide variations in the complexity of knowledge produced across 
U.S. cities which correlate highly with longer-run patterns of economic performance, with only a few 
metropolitan areas capable of producing the most complex technologies. 
 
It should be clear it is beneficial for a region to build comparative advantage in complex technologies. 
Once a region succeeds to do so, it can further grow in these technologies based on accumulative 
technological advantages and quasi-monopolistic rents. However, complex technologies are relatively 
scarce and it is therefore difficult for agents that comprise regional economies to develop competences 
in these fields. These two tendencies give rise to a ‘diversification dilemma’. On the one hand, the 
search for technological rents pushes regional actors to seek out complex knowledge possibilities. On 
the other hand, complex technologies remain out of reach for most because they lack the diversity of 
capabilities out of which complex technologies are derived. The general solution to the ‘diversification 
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dilemma’ is for regional economies to develop their existing knowledge cores and to expand their 
technological repertoires along related trajectories that lead toward more complex technologies. 
 
Based on this discussion, we formulate four hypotheses on complexity that will be tested for European 
regions, and which will be used in Section 5 to formulate a smart specialization policy framework in 
which complexity is associated with the benefits of moving from one technology to another.   
 
H3: regions are less likely to develop new specializations in complex technological activities 
 
H4: regions are more likely to experience technological growth in complex technological activities 
 
H5: regions are more likely to develop new specializations in complex technological activities when 
related to their knowledge bases 
 
H6: regions are more likely to experience technological growth in complex technological activities 
when related to their knowledge bases 

 

3. DATA AND METHODS 

A key challenge for smart specialization policy is to develop a framework to systematically identify 
technological opportunities in regions. We define technological opportunity as the potential to develop 
critical capacity in a technology that (1) draws on the specific knowledge bases of the region and that (2) 
leads to technological upgrading. Technological opportunities can be identified as those technologies in 
which a region does not yet possess critical capacity but that have a high degree of relatedness with the 
region’s existing knowledge base, and that will enhance the knowledge complexity of the region. We 
use patent data to measure relatedness between different sets of knowledge (captured by patent classes) 
and the complexity value of technologies. The relatedness measure provides an indicator of the cost of 
moving from one technology to another, while complexity provides a way of assessing the potential 
benefits of such movement. 
 
We use the OECD-REGPAT 5  database to identify technological fields and compute measures of 
relatedness and knowledge complexity. OECD-REGPAT derives from PATSTAT: it contains all patent 
applications to the European Patent Office from 1977 to 2011. Patent applications are regionalized at the 
NUTS2 level by inventor address6. Although the geographical coverage of the data spans all OECD 
countries, we restrict our focus to EU28 plus Iceland, Norway, and Switzerland. Patent applications are 
classified in technological domains according to the International Patent Classification (IPC). We use 
Cambridge Econometrics to measure regional population, population density and GDP per capita.  

																																																													
5	September	2015	Edition	
6	Fractional	counts	cleaned	by	inpadoc	families	of	PATSTAT	
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3.1. MEASURING RELATEDNESS BETWEEN TECHNOLOGIES 

To measure technological relatedness between patent classes, we use the distribution of knowledge 
claims by IPC class on each patent across the EU as a whole, following Boschma et al. (2015) and 
Rigby (2015). This is done by counting the number of EU patents for a given period that contains a 
co-class pair, say i and j, and then standardizing this count by the total number of patents that record 
knowledge claims in IPC classes i and j. Relatedness is, therefore, a standardized measure of the 
frequency with which two IPC classes appear on the same patent. We use a standardization method 
(Steijn, 2017) based on Van Eck and Waltman (2009), as implemented in the relatedness function of the 
EconGeo R package7 (Balland, 2017). The relatedness between technologies can be formalized as a 
network, the knowledge space. The knowledge space is an n*n network where the individual nodes i (i 
=1,…, n) represent technological categories (IPC classes), and the links between them indicate their 
degree of relatedness. We compute relatedness ( tji ,,j ) between each pair of technologies i and j for  five 

different non-overlapping periods: 1985-1989, 1990-1994, 1995-1999, 2000-2004 and 2005-2009. 
Figure 1 shows the relatedness network for the EU for the period 2005-2009. Individual nodes are 
colored according to the five aggregate technological fields defined by Schmoch (2008)8. 
 

																																																													
7	In	this	paper	we	used	EconGeo,	version	1.3:	https://github.com/PABalland/EconGeo	
8	Source:	WIPO	IPC	Technology	Concordance	Table	
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Figure 1. European Knowledge Space

 
 
While Figure 1 displays the relatedness between technology pairings for the EU as a whole, it is also 
possible to identify the knowledge structure of individual regions within the EU. We are particularly 
interested in exploring the knowledge cores of regions (Heimeriks and Balland, 2016), or how much of 
the technology produced within each NUTS2 region (as captured by number of patents) tends to cluster 
around individual technological fields. Thus, for each region r, we calculated the density of technology 
production in the vicinity of individual technologies i. Following Hidalgo et al. (2007) and Boschma et 
al. (2015), the density of knowledge production around a given technology i in region r at time t is 



9	
	

derived from the technological relatedness tji ,,j  of technology i to all other technologies j in which the 

region has relative technological advantage (RTA), divided by the sum of technological relatedness of 
technology i to all the other technologies j in the reference region (Europe) at time t : 
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RTA is a binary variable that assumes the value 1 when a region possesses a greater share of patents in 
technology class i than the reference region (EU as a whole), and assumes value 0 otherwise. A region r 
has RTA in production of technological knowledge i (r = 1,..., n; i = 1, …, k) such that 𝑅𝑇𝐴%,'( = 1	if:    
 

𝑝𝑎𝑡𝑒𝑛𝑡𝑠%,'( / 𝑝𝑎𝑡𝑒𝑛𝑡𝑠%,'('

𝑝𝑎𝑡𝑒𝑛𝑡𝑠%,'( / 𝑝𝑎𝑡𝑒𝑛𝑡𝑠%,'('%%
> 1 

 

Figure 2 shows for all European regions the average relatedness density between existing technologies 
in a region and all potential alternative technologies for the period 2005-2009. The higher the region’s 
score on relatedness density, the closer, on average, its existing set of technologies to those technologies 
that are missing in the region. In other words, it reflects an overall average score of the potential of a 
region to develop new technologies. Figure 2 shows there are huge differences in branching potential 
between countries and between regions in Europe. In general, Central Europe (North Italy, South 
Germany, Austria) shows high potentials to develop new technologies, in contrast to many regions in 
Southern and Eastern Europe where branching opportunities are much lower. 

 

FIGURE 2. BRANCHING OPPORTUNITIES OF EUROPEAN REGIONS 
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3.2. MEASURING KNOWLEDGE COMPLEXITY  

Which technologies and regions hold the most valuable knowledge, especially that which is tacit and 
thus difficult to access? There is a long literature that explores the characteristics and the value of 
innovations (Abernathy and Clark, 1985). In the patent literature, it is common to assess the quality and 
value of new knowledge using forward citations (Trajtenberg, 1990) or composite indicators including 
citations, family-size, renewals and litigation (Harhoff et al., 2003; Castaldi et al. 2015). However, we 
still do not have a clear idea of whether such measures capture the essence of tacit knowledge. Kogut 
and Zander (1993) suggested that knowledge complexity might be used as a proxy for tacit knowledge. 
After Simon (1962), complexity is understood as a function of the number of components out of which it 
is constructed and the interdependence of those components. Fleming and Sorenson (2001) developed 
these ideas in a measure of complexity for individual patents that captures the difficulty of combining 
knowledge subsets represented by different technology sub-classes in U.S. patent data. 
 
Hidalgo and Hausmann (2009) developed a method for calculating the complexity of products and 
countries using export data. Their complexity indices reflect the spatial distribution of RTA by product 
and country and thus the observed difficulty of producing individual products and composite export 
baskets. Using these measures of complexity, Balland and Rigby (2017) used USPTO patent data to map 
the technological complexity of U.S. metropolitan regions from 1976 to 2005. They computed 
knowledge complexity using an eigenvector reformulation of the method of reflections outlined by 
Hidalgo and Hausmann (2009). The starting point of the knowledge complexity index is the network 
that connects regions to the technological knowledge they develop, which can be represented as an n by 
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20

30

40

50
av_reldens



11	
	

k 2-mode adjacency matrix (M). The resulting network comprises n=282 regions (NUTS 2) and k=33 
technological domains9 (2-digit level), as proposed by Schmoch (2008). In this n*k matrix, the weight of 
each edge xc,i  is the number of patents produced within region r in technological category i (r = 1,..., n; i 
= 1, …, k). As for relatedness, we divide the years for which we have patent data into six periods of five 
years, and we construct a 2-mode region-technology network for each of the periods: 1985-1989, 1990-
1994, 1995-1999, 2000-2004 and 2005-2009. 
 
To construct our index of knowledge complexity, we only consider regions that are significant producers 
of particular technological knowledge types, those technologies for which regions have RTA in a given 
period. As a result, the elements of the adjacency matrix that we examine 𝑀%,' reflect whether or not 
region r has RTA in the production of technological knowledge i (r = 1,..., n; i = 1, …, k). Following 
Hidalgo and Hausmann (2009) and Balland and Rigby (2017), the complexity index of individual 
technologies is computed as the second eigenvector 𝑄	of the square matrix	(𝑀','′), which is associated 
with the largest eigenvalue, where (𝑀','′) is a 1-mode projection of the region-technology matrix and 
where 𝑀','′ is computed as the product of the transpose of 𝑀%,'  by 𝑀%,' ) 
 

	𝑀','′ =	
89,:89′,:
;:,<;9,<%                                                          

 
and the technological (knowledge) complexity (TCI) equals:  
 

𝑇𝐶𝐼' = 	
?@	A	?B
C(DEF	(?)

	                                                              

 
The technological classification in Table 1 corresponds to the 2-digit level of IPC, and is further broken 
down at the 3-digit level for the empirical analysis. The table shows that the most complex technologies 
are related to digital communication, computer technology, biotech and semiconductors in the period 
2005-2009. The least complex ones belong to textiles, mechanical elements, and materials, metallurgy. 
 

Table 1. Knowledge Complexity of Technological Fields 
Technological Sub-Field                         

(2-digit) 
Technological Field                    

(1-digit) 
Number of 

Patents 
Knowledge Complexity 

Index 

Digital communication Electrical engineering 24566 100 
Telecommunications Electrical engineering 34007 96.97 

																																																													
9	The	 2-mode	 network	 used	 to	 compute	 complexity	 is	 based	 on	 the	 2-digit	 technological	 domains	 and	 not	 IPC	 classes	
because	of	the	high	size	heterogeneity	of	IPC	classes.	In	fact,	using	IPC	classes	as	nodes	in	the	region-technology	network	
would	 lead	 to	a	noisy	complexity	estimation	because	some	 IPC	classes	are	very	 small	 (less	 than	20	patent	applications	a	
year),	while	others	are	very	large	(more	than	3,000	patent	applications	a	year).	Using	the	broader	and	more	homogenous	
classification	proposed	by	Schmoch	(2008)	allows	us	to	circumvent	this	problem.	The	EU	complexity	ranking	 is	consistent	
with	 the	 US	 one	 described	 by	 Balland	 and	 Rigby	 (2017).	 As	 a	 robustness	 check,	 we	 also	 compute	 complexity	 using	 the	
model	proposed	by	Fleming	and	Sorenson	(2001)	and	found	no	major	differences.		
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Computer technology Electrical engineering 34246 93.94 
Audio-visual technology Electrical engineering 21662 90.91 
IT methods for management Electrical engineering 5565 87.88 
Pharmaceuticals Chemistry 62999 84.85 
Organic fine chemistry Chemistry 99687 81.82 
Basic communication process Electrical engineering 6284 78.79 
Optics Instruments 17771 75.76 
Semiconductors Electrical engineering 17315 72.73 
Biotechnology Chemistry 38361 69.7 
Medical technology Instruments 46350 66.67 
Micro-structure and nano-technology Chemistry 2481 63.64 
Measurement Instruments 60591 60.61 
Food chemistry Chemistry 14635 57.58 
Control Instruments 17246 54.55 
Furniture, games Other fields 17389 51.52 
Basic materials chemistry Chemistry 43406 48.48 
Chemical engineering Chemistry 38982 45.45 
Environmental technology Chemistry 10611 42.42 
Macromolecular chemistry, polymers Chemistry 34069 39.39 
Engines, pumps, turbines Mechanical engineering 38953 36.36 
Electrical machinery, apparatus, energy Electrical engineering 57052 33.33 
Textile and paper machines Mechanical engineering 21638 30.3 
Other consumer goods Other fields 20302 27.27 
Civil engineering Other fields 32346 24.24 
Materials, metallurgy Chemistry 23955 21.21 
Other special machines Mechanical engineering 37208 18.18 
Thermal processes and apparatus Mechanical engineering 23146 15.15 
Surface technology, coating Chemistry 18977 12.12 
Transport Mechanical engineering 58920 9.09 
Handling Mechanical engineering 60120 6.06 
Mechanical elements Mechanical engineering 38604 3.03 
Note: Technological fields and sub-fields as defined by Schmoch (2008). The knowledge complexity index follows the 
network-based approach proposed by Hidalgo & Hausmann (2009) and Balland & Rigby (2017). 

 

4. RELATEDNESS, KNOWLEDGE COMPLEXITY AND DIVERSIFICATION IN EU REGIONS 

This section presents the results of two econometric models that analyze: (1) the probability that a region 
develops a new relative technological advantage in a given technology (entry), and (2) the growth rate of 
technologies in regions, as measured by the growth of patents in a given technology (growth). Following 
the theoretical framework, our main variables of interests are relatedness density between a given 
technology and the overall technological portfolio of a region (i.e. proximity to existing technologies) 
and the knowledge complexity of technologies (i.e. potential upgrading of technological structure). We 
also include control variables: (1) four variables at the regional level, that is, population (log), GDP per 
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capita, population density, and technological stock (total number of technological claims in a region); 
and (2) one variable at the technological level, that is, technological size (total number of technological 
claims of a technology). Table 2 provides summary statistics for the variables. 
 

Table 2. Summary Statistics 

 N Mean St. Dev. Min Max 
 Entry 627,924 0.144 0.351 0 1 

Exit 152,245 0.488 0.500 0 1 
Growth 673,563 13.841 124.058 -100 1,000 
Relatedness Density 777,241 20.110 18.378 0 100 
Knowledge Complexity 780,169 38.794 24.612 3.030 100 
Population 734,274 1,903,370 1,521,327 120,536 11,843,594 
GDP per capita 734,274 22,956.480 9,971.069 2,050 94,020 
Population Density 734,274 388.517 886.978 3.220 9,431 
Technological stock 780,169 3,121 6,288 49 65,531 
Technological size 780,169 1,308 3,189 31 65,949 

  
All the specifications are estimated at the region-technology level. We use a linear probability model 
(LPM) to assess the probability that a region specializes in a new technological field (entry) using the 
following specification (a similar econometric model is used for the growth models):  
 

tirtrtitr

titirtir

TECHSREGIONS
COMPLEXITYKNOWLEDGEDENSITYSRELATEDNESENTRY

,,1,41,3

1,21,,1,, __
eafbb

bb
+++++
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--
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We expect a positive coefficient for relatedness density in both the entry model (hypothesis 1) and the 
growth model (hypothesis 2), and a negative coefficient for complexity in the entry model (hypothesis 3) 
and a positive one in the growth model (hypothesis 4). The baseline specification is a two-way fixed-
effects model where rf  is a region fixed effect, iy  ta  is a time fixed effect, and tci ,,e  is a regression 

residual. Since errors are correlated within regions and technologies, the regression results presented in 
all regression outputs are adjusted for clustering at the region and technology level. Our panel consists 
of data for 282 NUTS2 regions and 617 technologies (IPC) over the period 1985-2009. We average the 
data over non-overlapping five-year periods, denoted by t. To avoid potential endogeneity issues, all the 
independent variables are lagged by one period, denoted by t-1.  
 

4.1. ENTRY MODELS - FULL SAMPLE 
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In all entry10 models in Table 3, we find that relatedness density has a positive and significant effect on 
the probability that a region specializes (RTA>1) in a new technological field, which is consistent with 
other findings (Boschma et al., 2015; Rigby, 2015; Balland, 2016). The effect of relatedness is also 
strong: an increase of 10% in relatedness density is associated with a 23% to 26% relative increase in the 
probability of entry11. The effect of knowledge complexity on entry is more ambiguous. The sign for 
knowledge complexity is positive and significant in the simplest specification (model 2), still positive 
but insignificant when we add regional and technology controls (model 4), and negative and significant 
in the fixed effect model (model 5). Overall, the effect is always small: when the complexity of a 
technology goes up by 10 points (scale 0 - 100), the relative likelihood that a region specializes in this 
technology increases by 0.3% in the simplest specification and decreases by 0.35% in the fixed effects 
specification. This result might indicate the ‘diversification dilemma’ mentioned earlier: complex 
knowledge is more attractive (positive effect on entry) but at the same time also more difficult to 
produce (negative effect on entry). Therefore, the relationship between knowledge complexity and new 
specialization is not linear and might be region-specific (Petralia et al., 2017; Pinheiro et al., 2017). 
 

Table 3. Entry Models - Full Sample 

 Dependent variable: Entry (=1) | 1990 – 2009 
    

 Baseline Complexity Controls Full Model Full Model (F.E.) 

 (1) (2) (3) (4) (5) 
 Constant 0.1632872*** 0.1632945*** 0.1498963*** 0.1639320*** -0.0117608 

 (0.0005543) (0.0005543) (0.0005242) (0.0005722) (0.0255653) 
      Relatedness Density 0.0042477*** 0.0042494***  0.0041635*** 0.0037696*** 

 (0.0000388) (0.0000388)  (0.0000419) (0.0000449) 
      Knowledge Complexity  0.0000459*  0.0000354 -0.0000575** 

  (0.0000199)  (0.0000211) (0.0000215) 
      Population (log)   0.0322163*** 0.0172538*** -0.1155466*** 

   (0.0008129) (0.0008150) (0.0148724) 
      GDP per cap.   0.0000020*** 0.0000005*** 0.0000017*** 

   (0.0000001) (0.0000001) (0.0000003) 
      Population Density   -0.0000090*** -0.0000030*** 0.0000198 

																																																													
10	The	control	variables	GDP	per	capita,	population,	and	technological	size	have	a	positive	and	significant	impact	on	
technological	entry	in	most	models,	while	the	regional	technological	stock	and	population	density	tend	to	have	a	negative	
and	significant	impact.	
	
11	In	the	baseline	model	1	for	instance,	the	unconditional	probability	of	entry	is	around	16%	(as	all	independent	variables	
are	mean-centered,	the	constant	is	equal	to	the	unconditional	probability	of	entry	=	0.1632872).	An	increase	by	10%	in	
relatedness	density	(relatedness	density	ranges	from	0	to	100%)	increases	the	relative	probability	of	entry	by	
(0.0042477*10)/0.1632872	=	26%.	In	the	most	conservative	model	(fixed	effect,	model	5),	we	find	an	increase	in	the	
relative	probability	of	entry	of	about	(0.0037696*10)/0.1639320	=	23%.	Note	that	the	intercept	in	a	fixed	effect	model	
cannot	be	interpreted	as	the	unconditional	probability	of	entry	by	definition.	The	unconditional	probability	of	entry	for	this	
model	can	be	found	as	the	intercept	of	model	4.			
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   (0.0000007) (0.0000007) (0.0000122) 
      Tech. stock   -0.0000022*** -0.0000022*** -0.0000023*** 

   (0.0000001) (0.0000001) (0.0000002) 
      Tech. size   0.0000004** 0.00000005 0.0000013*** 

   (0.0000002) (0.0000002) (0.0000002) 
       Region fixed effects No No No No Yes 
Time fixed effects No No No No Yes 
Observations 498,785 498,785 466,814 466,814 466,814 
R2 0.0303005 0.0303106 0.0040004 0.0306804 0.0371538 
Adjusted R2 0.0302985 0.0303068 0.0039897 0.0306659 0.0366399 
Note: The dependent variable entry equals one if a region r gains a new relative technological advantage in a given 
technology i during the corresponding 5-years window, and equals zero otherwise. All the independent variables are mean-
centered and lagged by one period. Coefficients are statistically significant at the * p<0.05, ** p<0.01, *** p<0.001 level. 
Heteroskedasticity-robust standard errors (clustered at the region and technology level) in parentheses. 

 
 

4.2. ENTRY MODELS FOR HIGH AND LOW LEVEL OF RELATEDNESS   
 

To further investigate this and test hypothesis 5, we split the sample between observations with high 
level of relatedness and observations with low level of relatedness. Results are presented in Table 4.  
 

Table 4. Entry Models by Level of Relatedness 

 Dependent variable: Entry (=1) | 1990 – 2009 
    

 
High 

Relatedness 
Low 

Relatedness 
High 

Relatedness 
Low 

Relatedness 
High 

Relatedness 
Low 

Relatedness 

 (1) (2) (3) (4) (5) (6) 
 Constant 0.3669312*** 0.0309562*** 0.3614363*** 0.0405249*** 0.2306594 0.0903739** 

 (0.0023488) (0.0006430) (0.0026666) (0.0009141) (0.1847726) (0.0327663) 
       Knowledge 
Complexity 0.0004628*** -0.0000389 0.0002671* -0.0000062 0.0002526* -0.0000359 

 (0.0001007) (0.0000272) (0.0001127) (0.0000395) (0.0001124) (0.0000419) 
       Population (log)   0.0433384*** 0.0224518*** -0.0657516 0.0488210* 

   (0.0044990) (0.0014247) (0.0934813) (0.0200723) 
       GDP per cap.   0.0000004 0.0000015*** 0.0000016 0.0000002 

   (0.0000004) (0.0000001) (0.0000016) (0.0000005) 
       Population Density   0.0000016 -0.0000057*** 0.0000252 -0.0000202 

   (0.0000034) (0.0000015) (0.0000569) (0.0000281) 
       Tech. stock   -0.0000026*** 0.0000002 -0.0000036*** 0.0000003 

   (0.0000004) (0.0000002) (0.0000007) (0.0000004) 
       Tech. size   0.0000088*** 0.0000021** 0.0000139*** 0.0000018* 

   (0.0000012) (0.0000007) (0.0000013) (0.0000007) 
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Region fixed 
effects No No No No Yes Yes 

Time fixed effects No No No No Yes Yes 
Observations 42,164 72,557 34,309 47,029 34,309 47,029 
R2 0.0005119 0.0000281 0.0053447 0.0127176 0.0584039 0.0334063 
Adjusted R2 0.0004882 0.0000143 0.0051707 0.0125916 0.0515479 0.0282820 
Note: High relatedness models only include the top 10% region - technology observations in terms of relatedness density. 
Low relatedness models only include the bottom 10% region - technology observations in terms of relatedness density. The 
dependent variable entry equals one if a region r gains a new relative technological advantage in a given technology i during 
the corresponding 5-years window, and equals zero otherwise. All the independent variables are mean-centered and lagged 
by one period. Coefficients are statistically significant at the * p<0.05, ** p<0.01, *** p<0.001 level. Heteroskedasticity-
robust standard errors (clustered at the region and technology level) in parentheses. 
 
The main result is that the effect of complexity on entry appears to be conditional of the level of 
relatedness. When relatedness is high, i.e. when models include only the top 10% region-technology 
observations in terms of relatedness density12, knowledge complexity has a positive, significant impact 
on the development of new technologies. When the complexity of a technology goes up by 10 points, 
the likelihood that a region will develop this technology increases by 1.3% in the simplest specification, 
which is five times higher than what we found in the specifications unconditional to relatedness. In the 
more conservative fixed effects specification, complexity is still positive and significant. What is 
interesting is that, when relatedness is low, i.e. when models include only the bottom 10% region-
technology observations in terms of relatedness density, complexity never has a significant impact on 
the development of new technologies. What these results tell us is that relatedness conditions access to 
complex technologies and tends to solve the ‘diversification dilemma’: when relatedness is high, regions 
are more likely to diversify in complex technologies, confirming hypothesis 5.  
 

4.3. GROWTH MODELS - FULL SAMPLE 
 

To further investigate the impact of technological relatedness and knowledge complexity on sustainable 
specializations, we now turn to technological growth models in Table 5.  

 

Table 5. Growth Models - Full Sample 

 Dependent variable: Technological growth | 1990 – 2009 
    

 Baseline Complexity Controls Full Model Full Model (F.E.) 

 (1) (2) (3) (4) (5) 
 Constant 13.7038900*** 13.7207500*** 13.5505400*** 13.5218000*** 73.6810700*** 

 (0.1707395) (0.1707130) (0.1773364) (0.1767446) (7.4333840) 
      Relatedness Density 0.4642356*** 0.4650504***  0.3519811*** 0.2038730*** 

 (0.0101046) (0.0101016)  (0.0113171) (0.0119662) 
      Knowledge  0.2083142***  0.1811793*** 0.1236107*** 
																																																													
12	Therefore,	relatedness	density	is	excluded	from	this	model.		
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Complexity 

  (0.0079042)  (0.0082521) (0.0079222) 
      Population (log)   15.6830000*** 13.9970400*** 57.4033100*** 

   (0.2933130) (0.2957986) (4.4582030) 
      GDP per cap.   0.0004739*** 0.0003251*** 0.0000061 

   (0.0000201) (0.0000205) (0.0000892) 
      Population Density   -0.0039671*** -0.0033924*** -0.0031405 

   (0.0002246) (0.0002242) (0.0032979) 
      Tech. stock   -0.0004838*** -0.0005061*** -0.0051211*** 

   (0.0000325) (0.0000326) (0.0001068) 
      Tech. size   0.0010760*** 0.0007250*** 0.0016523*** 

   (0.0000560) (0.0000565) (0.0000584) 
       Region fixed effects No No No No Yes 
Time fixed effects No No No No Yes 
Observations 556,721 556,721 521,175 521,175 521,175 
R2 0.0039793 0.0055811 0.0072392 0.0103975 0.0671133 
Adjusted R2 0.0039775 0.0055776 0.0072297 0.0103842 0.0666674 
Note: The dependent variable growth corresponds to the rate of technological growth (growth in the number of claims) of a 
technology i in a region r from period t to period t+1. All the independent variables are mean-centered and lagged by one 
period. Coefficients are statistically significant at the * p<0.05, ** p<0.01, *** p<0.001 level. Heteroskedasticity-robust 
standard errors (clustered at the region and technology level) in parentheses. 
 
We find that both relatedness and complexity have a positive, strong, and statistically significant impact 
on technological growth at the regional level, confirming hypotheses 2 and 4. This pattern holds across 
all econometric specifications. We find that an increase of relatedness density by 10 points is associated 
with an increase in technological growth by about 2% to 4.64%. In contrast with the entry models, the 
impact of knowledge complexity is now in the same order of magnitude. An increase of complexity by 
10 points is now associated with an increase in technological growth by about 1.2% to 2%. This means 
that once regions manage to diversify into more complex technologies, they tend to experience higher 
technological growth. Apparently, the most difficult step for regions is to enter into complex 
technological fields, but the rewards of technological upgrading seem to be fairly strong.  
 

4.4. GROWTH MODELS FOR HIGH AND LOW LEVEL OF RELATEDNESS   
 
As for the entry models, to test hypothesis 6, we now split the sample between observations with high 
level of relatedness and observations with low level of relatedness. Results are presented in Table 6.  

 

Table 6. Growth Models by Level of Relatedness 

 Dependent variable: Technological growth | 1990 – 2009 
    

 High Relatedness Low High Relatedness Low High Low 
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Relatedness Relatedness Relatedness Relatedness 

 (1) (2) (3) (4) (5) (6) 
 Constant 53.7695700*** -6.0870230*** 49.6868700*** -8.4233190*** -31.0214900 -10.3398200 

 (0.7609844) (0.1377738) (0.8003883) (0.2020142) (60.1171500) (5.9970820) 
       Knowledge 
Complexity 0.3256727*** -0.0096395 0.2581051*** -0.0107926 0.2276855*** -0.0305587** 

 (0.0340018) (0.0069824) (0.0361123) (0.0104075) (0.0344880) (0.0101187) 
       Population (log)   28.4596000*** -3.3740520*** -26.7761900 -2.6496500 

   (1.4859160) (0.3181761) (31.0434900) (4.0115730) 
       GDP per cap.   0.0001111 -0.0003621*** 0.0037211*** 0.0001280 

   (0.0001073) (0.0000220) (0.0005146) (0.0000970) 
       Population 
Density   -0.0048569*** 0.0006342* -0.0729367*** -0.0052360 

   (0.0009146) (0.0002874) (0.0144477) (0.0046896) 
       Tech. stock   -0.0020091*** -0.0001944* -0.0080889*** -0.0015154*** 

   (0.0001021) (0.0000909) (0.0003040) (0.0002594) 
       Tech. size   -0.0012314*** -0.0013100*** 0.0001989 -0.0011047*** 

   (0.0001257) (0.0002712) (0.0001165) (0.0002697) 
        Region fixed 
effects No No No No Yes Yes 

Time fixed effects No No No No Yes Yes 
Observations 63,797 74,199 54,992 48,659 54,992 48,659 
R2 0.0017529 0.0000365 0.0115695 0.0155464 0.1329042 0.0509171 
Adjusted R2 0.0017372 0.0000230 0.0114617 0.0154250 0.1289760 0.0460551 
Note: High relatedness models only include the top 10% region - technology observations in terms of relatedness density. 
Low relatedness models only include the bottom 10% region - technology observations in terms of relatedness density. The 
dependent variable growth corresponds to the rate of technological growth (growth in the number of claims) of a technology 
i in a region r from period t to period t+1. All the independent variables are mean-centered and lagged by one period. 
Coefficients are statistically significant at the * p<0.05, ** p<0.01, *** p<0.001 level. Heteroskedasticity-robust standard 
errors (clustered at the region and technology level) in parentheses. 
 
We find results in line with the entry models. Regions are more likely to experience technological 
growth if they specialize in complex technologies that are related to their capabilities, confirming 
hypothesis 6. When relatedness is high, i.e. when models include only the top 10% region-technology 
observations in terms of relatedness density, complexity has a positive, significant impact on 
technological growth. When the complexity of a technology goes up by 10 points, technological growth 
increases by about 2.27% to 3.25%. When relatedness is low, however, i.e. when models include only 
the bottom 10% region-technology observations in terms of relatedness density, complexity tends to 
have a negative impact though non-significant. In the fixed effect specification (for low complexity), the 
negative coefficient is statistically significant, though its impact is small (-0.3% growth for a 10 point 
increase). So, relatedness conditions technological growth in regions, suggesting that regions need to 
upgrade their technological structure by building on related, pre-existing capabilities. 
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5. A FRAMEWORK FOR SMART SPECIALIZATION 

We now formalize the implications of these results into a framework for smart specialization. We 
present a framework to systematically identify technological opportunities for regions, based on the 
relatedness density and knowledge complexity of individual technologies. It reflects the view that, given 
the fact that regions have different sets of core competences, a top-down ‘one-size-fits-all’ model built 
around picking champions is unlikely to be successful. Instead, we offer a model for smart specialization 
built around relatedness that demands a bottom-up approach. This framework could be used to identify 
hidden technological opportunities, avoid unrealistic investments, and assess how entrepreneurial 
discoveries that emerge from regional actors fit in the overall economic landscape of the region. 
 
This framework is presented in Figure 3. Operationalization requires identification of the knowledge 
base of regions to which a specific set of technological possibilities are tailored. The framework uses the 
relatedness measure to map technologies in which the region does not yet possess a relative 
technological advantage (RTA) but which are relatively close to the region’s existing technology core. 
Relatedness measures allow precise mapping of the accessibility of new regional growth paths and thus 
an accounting of the costs of their deployment. An index of the relative ease with which a region might 
be able to develop RTA in a new technology is defined along the X-axis. The Y-axis reflects the 
complexity of all technologies in which the region does not have RTA. Thus, for each region, the 
quadrants in the X-Y space of Figure 3 represent the relatedness between the region’s knowledge base 
and each technology for which RTA does not exist in the region, and a measure of how the development 
of RTA in each of these technologies would shift the region’s overall knowledge complexity. Hausmann 
et al. (2014) proposed a similar strategy to identify future economic opportunities of countries. 

 
Figure 3. A Framework for Smart Specialization  
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Our smart specialization policy framework in Figure 3 allows policymakers to weigh the relative ease of 
developing a new technology in a region in relation to the gains in knowledge complexity. Technologies 
with high relatedness represent new technological possibilities that are closely connected to the current 
knowledge base of the region. These technologies might reasonably be developed at relatively low cost 
and thus represent a low risk strategy for the region. Technologies with a low level of relatedness in 
relation to a region’s existing knowledge base represent new techniques that are distant from the 
region’s existing specializations and for which development is likely to be more costly, embodying 
greater risk. Each of these potential technologies is associated with a change in the region’s complexity 
or the value of the knowledge generated in the region. Potential new technologies that have high 
complexity are likely to add considerably to the complexity of the region and the overall value of the 
region’s knowledge assets, in contrast to potential new technologies with low complexity. 
 
The four quadrants of Figure 3 highlight the cost-benefit trade-off that undergirds smart specialization 
policy. An attractive smart specialization approach is the one that supports potential technologies that 
occupy the north-east quadrant of Figure 3, for these technologies promise above average returns and 
can be developed at relatively low risk. We refer to that as the ‘high road’ policy. In contrast, a policy 
focus on potential technologies in the south-west quadrant represent technologies that are far removed 
from the existing knowledge base of the region and their development is thus risky. Alongside the risk, 
these technologies are unlikely to raise the complexity value of the regional knowledge base. We 
therefore refer to such policy as ‘dead end’ policy. The north-west quadrant reflects a potentially high-
benefit strategy, but it is not rooted in regional capabilities and therefore likely to fail due to high risks. 
This policy aims at developing new technologies from scratch, which we therefore refer to as a ‘casino’ 
policy. The fourth policy option focuses on technologies in the south-east quadrant, which reflects a 
relatively low risk strategy because it builds on related capabilities. We dub this as ‘slow road’ policy 
because these potential technologies offer few expected benefits.  
 
So, the core idea of the smart specialization framework is that region-specific capabilities define, for 
each region, not only the set of opportunities to develop new growth paths but also the limits on those 
choices. By operationalizing this idea, we are able to eschew the one-size fits all policy model and offer 
place-based policy adapted to the particular conditions of regions (Tödtling and Trippl, 2005). In the 
past, regional technology policy was too often focused only on the Y-axis of Figure 3. Such policy of 
picking winners, of building “cathedrals in the desert”, paid insufficient attention to whether host 
regions had the technological capacity to support such ventures. Balancing the dimensions of relatedness 
and knowledge complexity provides an evidence-based platform on which to develop smart 
specialization, a platform that is more attuned to region-specific capabilities and thus less likely to lead 
to duplication and waste of scarce public and private resources.   

6. REGIONAL CASES TO FURTHER ILLUSTRATE THE SMART SPECIALIZATION FRAMEWORK 

For illustration purposes, we apply our smart specialization framework to four types of NUTS2 regions 
that can be considered representative cases (Camagni and Capello 2013): a core leading region (Île-de-
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France), a high-tech region (Noord-Brabant in the Netherlands), an old industrial region (Lancashire in 
the UK) and a lagging, peripheral region (Extremadura in Spain). We present the four cases in Figures 
4-7, following the same structure of Figure 3, with relatedness density on the horizontal axis and 
knowledge complexity on the vertical axis. The nodes (circles) represent potential technologies (or new 
growth paths) in which the region does not exhibit RTA in the period 2005-2009. The size of the nodes 
represents the total number of patents in each technology class, though note that all such classes are 
smaller than we might expect in the regions, based on the share of patents in these classes at the 
European level. Colours show the 1-digit classification of the technological classes. The distribution of 
the nodes in each figure makes clear that not all regions are in the same situation to build new growth 
trajectories: the size and content of the list of choices, as well as their accessibility, vary from one region 
to another.  

 
Île-de-France is the region with most patent applications. Its diversified portfolio of activities reveals the 
existence of a large set of capabilities the region can rely on to branch out towards new activities. Figure 
4 shows that Île-de-France has a relatively high relatedness with a large number of technologies it is not 
specialized in, many of them belonging to fields like electrical engineering and chemistry that are 
already quite present in the region, and to a lesser extent to mechanical engineering and instruments. 
Thus, Île-de-France has a wide range of options to diversify at relatively low risk. They involve both 
high and low complex technologies, making the second criterion of our framework relevant to choose 
the direction by discriminating among the low-risk alternatives. Since more complex technologies tend 
to have higher upgrading and growth potential, the Île-de-France could easily implement a ‘high-road’ 
smart specialization policy that targets the development of potential technologies in the north-east 
quadrant. 
 
Figure 4. Île-de-France (France, FR10 ) 
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Noord-Brabant is a typical high-tech region, located around Eindhoven in the Netherlands. In spite of its 
relatively small size, the region ranked in the top ten of patenting regions. Figure 5 shows the 
technologies in which Noord-Brabant could diversify by redeploying its existing capabilities. The menu 
of potential low-risk paths is less rich and more limited than for Île-de-France, i.e. the number of 
potential technologies with relatively high relatedness is smaller. While for Île-de-France, the low-risk 
options are in high and low complex technologies, in Noord-Brabant, they tend to be concentrated in 
high complex technologies (like communication) in the electrical engineering domain. Investing in other 
complex technology domains like chemistry (in the north-west quadrant) would imply a radical 
diversification strategy that is very risky, given the current, relatively specialized, technological 
structure of the Noord-Brabant economy.  
 
Figure 5. Noord-Brabant (Netherlands, NL41) 

 
 
Lancashire, in the Northwest of England, is a typical case of an old industrial region. Its patenting 
activity is far below the EU average, and less diversified than the previous two cases. Figure 6 shows 
that Lancashire, as Noord-Brabant, has still a lot of diversification options that are related to existing 
technologies. From the complexity angle, however, the story is different. Almost all potential 
technologies in Lancashire are closely related to low-complexity domains mostly in mechanical 
engineering, while complex domains, with high growth potential, are difficult to access given the current 
strengths of the region. Thus, for Lancashire, there are no low risk – high benefit smart specialization 
options. Targeting most electrical engineering technologies might reflect a 'casino' policy, while policy 
focus on most mechanical engineering technologies comes down to a 'slow road' approach. A smart 
specialization approach for Lancashire could target technologies that are relatively complex (upgrading 
its local economy), but still related to existing capabilities, such as some instruments and a few chemical 
technologies in the centre of the graph.   
 
Figure 6. Lancashire (United Kingdom, UKD4) 
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Finally, Extremadura is a typical peripheral region with a weak technological base. This severely limits 
the ability of the region to develop new growth paths. In the terminology of our framework, the region 
has many policy options in the high-risk quadrants, both with high and low expected benefits, but none 
in the low-risk quadrants, because most missing technologies show low relatedness. Peripheral regions 
provide one of the most complicated cases to build effective smart specialization policy, which is also 
echoed in writings on smart specialization policy (Foray 2015; Morgan 2015). Extremadura could go for 
a ‘casino’ strategy focusing on complex technologies because expected benefits are higher. However, 
complex technologies require a large set of capabilities which makes such successful long jumps for 
peripheral regions near to impossible. In our framework, every region can find a smart specialization 
policy by adjusting its ambitions to the local economic context. In the case of Extremadura, the subset of 
chemical technologies can be a reasonable starting point to accumulate knowledge and capabilities that 
can further be redeployed into increasingly complex technologies.   
 
Figure 7. Extremadura (Spain, ES43) 
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7. CONCLUSION AND DISCUSSION 

This paper has made an attempt to tackle the perceived lack of a strong theoretical and empirical 
foundation for smart specialization policy in Europe. First, we constructed a theoretical framework for 
smart specialization built around the concepts of relatedness and knowledge complexity. Second, we 
operationalized this framework empirically by calculating relatedness between technologies using EPO 
patent data and measuring the knowledge complexity of technologies using network-based techniques. 
Third, we used these measures to provide new evidence on how EU regions develop new technologies. 
We find that relatedness has a positive effect on technological diversification within regions. 
Diversifying into complex technologies is difficult for many regions, though it is easier when such 
technologies are more closely related to the existing knowledge core of the region. And regions tend to 
grow more if they specialize in complex technologies related to existing technologies in the region. 
 
Based on these theoretical and empirical underpinnings, we proposed a policy framework for smart 
specialization that highlights the potential risks and rewards for regions of adopting alternative 
diversification strategies. We showed how potential risks of smart specialization may be assessed using 
the concept of relatedness, and how potential benefits can be derived from estimates of the complexity 
of technologies. Our policy framework incorporates the key logic of smart specialization, that is, a 
bottom-up policy approach based on the idea that regions should leverage their existing capabilities to 
develop and secure comparative advantage in related high-value-added activities. We underlined further 
the relevance of such a policy framework and the need for a region-specific focus by identifying the 
diversification opportunities in different types of regions.  
 
Although this paper provides some important pieces to the puzzle of smart specialization, we are still far 
from a comprehensive framework. We have not focused on the design and implementation of smart 
specialization policy, and what exact role public agents need to play (Iacobucci, 2014; Valdaliso et al. 



25	
	

2014; Kroll, 2015; Capello and Kroll, 2016; Moodysson et al., 2016; Matti et al. 2017). We now discuss 
some important issues that still need to be tackled. 

Our paper has focused on technological knowledge, and only that part of knowledge embodied in patent 
activity. It is crucial to emphasize that smart specialization policy is about diversifying from regional 
capabilities in general, not only from knowledge captured by patents. The proposed smart specialization 
policy framework could and should therefore assess diversification options for regions that include other 
forms of knowledge and capabilities not captured by patents, such as products, industries and jobs 
(Unterlass et al., 2015; Cortinovis et al., 2017). This is especially important for bringing smart 
specialization policy more in line with the objective of Cohesion Policy that aims at reducing disparities 
between EU regions, and which has repeatedly been mentioned as one of the key challenges in EU 
regional innovation policy (McCann & Ortega-Argilés, 2013, 2015; Morgan 2015). This is because low-
tech knowledge (of both high and low complexity) also provides diversification opportunities for 
regions, especially in the more peripheral parts of the EU (Asheim et al. 2011). 

We need to think more deeply about how to tackle the inherent tension within smart specialization 
policy between prioritising and selecting activities based on regional potentials (as in our proposed 
framework) on the one hand, and reliance on the entrepreneurial discovery process in which this 
selection process is completely decentralized, bottom-up and process-led on the other hand (Coffano and 
Foray, 2014). One potential way to solve this tension is to first identify diversification opportunities in 
each region based on their scores on relatedness and complexity, after which, within that range of 
opportunities, the entrepreneurial discovery process will unfold, in which a range of local actors will 
decide which activities to target and assist (Boschma and Gianelle 2013). Or the other way around, a 
range of activities will first be selected through the entrepreneurial discovery process, which are then 
assessed within the diversification opportunities of each region identified by our framework. 

Our smart specialization framework still has to be framed in relational next to territorial terms (Thissen 
et al., 2013; Iacobucci and Guzzini, 2016 Sörvik et al. 2016), to account for non-local linkages to avoid 
regional lock-in (Bathelt et al. 2004), as these give regions access to complementary capabilities 
elsewhere. One example is the recent focus on trade networks and value chains and how to incorporate 
these into smart specialization strategies (Radosevic and Ciampi Stankova, 2015). Another challenge is 
how smart specialization policy can assist in linking peripheral regions to the outside world to 
compensate for a lack of local capabilities (Fitjar and Rodríguez-Pose, 2011; Grillitsch and Nilsson 
2015). And we need to think how smart specialization policy can incorporate the crucial importance of 
inflows of skilled labour for related diversification and structural change in regions (Neffke et al. 2017). 

Another building block of smart specialization policy is the need for the right institutional governance 
structure in place at the local level (Grillitsch, 2016; McCann et al, 2017; Morgan, 2017). When the 
quality of institutional governance differs greatly between regions, as it does in Europe (Rodríguez-Pose 
et al. 2014), it is also likely to affect their ability to move into new and more complex technologies. This 
might require a local institutional context (governance, social capital) that facilitates the coordination 
and combination of a wide range of capabilities (Cortinovis et al. 2017). Especially peripheral regions 
suffer from institutional weaknesses that might limit smart specialization strategy  (Karo and Kattel, 
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2015; Rodríguez-Pose and Wilkie, 2015), like a traditional approach to governance (no experimentation 
culture), weak administrative capabilities, low quality of government, tight connections with local 
vested players, weak entrepreneurial capacities, and the absence of a local culture of collaboration. 

Lastly, there is an ongoing discussion whether smart specialization policy should focus on disruptive 
activities, as echoed in recent pleads for mission-oriented policies such as  curing cancer or greening the 
economy (Mazzucato 2013; Frenken 2016). While there is little understanding of how mission-oriented 
policies should actually be designed (except for setting specific targets and directions for future 
development), our framework shows how risky such demand-led policy targeting very complex and 
unknown technologies will be when formulated and implemented without embedding it in the 
appropriate technological and institutional context in countries and regions. When ignoring that, it is not 
difficult to foresee that such mission–oriented policies will fall in the same traps that smart 
specialization policy aims to avoid, like picking fashionable activities from scratch, and duplicating 
major research and innovation investments. This is not to deny that public policy can play a key role in 
initiating transformative change when fundamental uncertainty is the rule, but only when embedded in 
an appropriate territorial context (Unterlass et al., 2015; Boschma, 2017; Montresor and Quatraro, 
2017). Our proposed framework may be instrumental to make such informed choices. 
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